Watson-Marlow Bredel offers a wide range of tubing choices to accommodate the wide range of applications which employ Watson-Marlow Bredel pumps. Choice of tubing is as important as the choice of pump. Watson-Marlow Bredel pumps are designed around Watson-Marlow Bredel tubing, and utilization of other tubing could result in sub-standard performance.

There are a number of characteristics which relate the tube's composition to the performance of the pump. The tube's restitution draws in the fluid and creates suction lift. The tube's strength resists pressure, its flex resistance determines pumping life, its bore decides the flow rate, and its wall thickness controls pumping efficiency. Watson-Marlow Bredel tubing has been designed to maximize the performance related to each of these features.

Watson-Marlow Bredel offers seven different tubing materials, including proprietary Marprene® and Bioprene®, which have been developed to provide the longest life possible from peristaltic pump tubing. In addition to Marprene and Bioprene Watson-Marlow Bredel offers Silicone, Neoprene, Butyl, Tygon¹, and Fluorel² tube materials.

Marprene is Marprene is Watson-Marlow Bredel's exclusive thermoplastic elastomer which has proven superior in applications where it is chemically compatible. Marprene is Watson-Marlow Bredel's most often recommended tubing material. Marprene has a wide chemical compatibility and is highly resistant to oxidizing agents such as ozone, peroxides, and hypochlorite. Marprene is also opaque to both visible and ultra-violet light, and maintains low permeability to gases such as oxygen, carbon dioxide, and nitrogen.

Bioprene offers the same benefits as Marprene with the added feature of compliance with USP Class VI, FDA requirements 21 CFR 177.2600, and USDA standards for food handling. Bioprene has also been developed for long life and wide chemical compatibility, with the ability to handle fluid temperatures to 176° F. Both Bioprene and Marprene can be sterilized by autoclave, and repeated autoclaving will not affect overall life. Additionally Bioprene can be sterilized by ethylene oxide or gamma radiation.

Silicone is the standard laboratory tubing most used for smaller bore sizes to 3/8". This food and medical quality material meets USP Class VI standards and is autoclavable. Watson-Marlow Bredel also offers a specially-developed platinum-cured silicone tubing which provides users with additional security in protecting their fluids from contamination during the pumping process. Platinum-cured tubing produces a "tighter" state of cure, providing a smoother surface which results in less protein binding. This silicone grade is ideal for medical device, chemical analysis, bulk active drug, and pharmaceutical production applications, particularly where there is long-term contact with the process fluid.

Neoprene offers excellent performance in abrasive slurry and sustained pressure applications. This food quality tubing is most often utilized in bore sizes greater than 1/2". For most applications, Watson-Marlow Bredel will recommend Marprene tubing instead of Neoprene.

Butyl offers a wide range of chemical resistance and is often employed in applications which are not compatible with Neoprene.

Tygon is a polyvinylchloride thermoplastic which offers excellent pressure performance.

Fluorel has been developed for chemical resistance to solvents, oils and strong acids, providing long life and chemical resistance in applications unsuitable to other tubing materials.

¹ Tygon is a registered trademark of the Norton Company
² Fluorel is a registered trademark for the fluoroelastomer from Dyneon, LLC

Temperature

The chart shows the temperature range of each tubing type when suction and delivery pressures are negligible. Operating temperature of Bioprene, Marprene and Silicone tubing are limited to 80°C, but all three may be autoclaved up to 135°C.

<table>
<thead>
<tr>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20°C</td>
</tr>
<tr>
<td>Bioprene / Marprene</td>
</tr>
<tr>
<td>Silicone</td>
</tr>
<tr>
<td>Neoprene</td>
</tr>
<tr>
<td>Butyl</td>
</tr>
<tr>
<td>Tygon</td>
</tr>
<tr>
<td>Fluorel</td>
</tr>
</tbody>
</table>

Pressure

Choose the smallest bore size of tubing which will give the required flow rate.

<table>
<thead>
<tr>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Bioprene / Marprene</td>
</tr>
<tr>
<td>Silicone</td>
</tr>
<tr>
<td>Neoprene</td>
</tr>
<tr>
<td>Butyl</td>
</tr>
<tr>
<td>Tygon</td>
</tr>
<tr>
<td>Fluorel</td>
</tr>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restitutional power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restitutional power</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
<tr>
<td>Tubing Compatibility</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
</tbody>
</table>

- **Acetaldehyde**
- **Acetamide**
- **Acetic acid, cold**
- **Acetic acid, hot**
- **Acetic anhydride**
- **Acetone**
- **Acetophenone**
- **Acetyl bromide**
- **Acetyl chloride**
- **Acetylene**
- **Acetylene tetrachloride**
- **Acrylonitrile**
- **Allene**
- **Aldehydes**
- **Aliphatic hydrocarbon solvents**
- **Alum**
- **Aluminium chloride**
- **Aluminium nitrate**
- **Aluminium salts**
- **Ammonia gas, cold**
- **Ammonia gas, hot**
- **Ammonium acetate**
- **Ammonium carbonate**
- **Ammonium hydroxide**
- **Ammonium nitrate**
- **Ammonium phosphate**
- **Ammonium salts**
- **Ammonium sulphate**
- **Amyl acetate**
- **Amyl alcohol**
- **Amyl borate**
- **Amyl chloride**
- **Amyl chloronaphthalene**
- **Amyl naphthalene**
- **Aniline, cold**
- **Aniline, hot**
- **Aniline dyes**
- **Aniline hydrochloride**
- **Antimony salts**
- **Aqua regia**
- **"Araldite"**
- **"Arkone P"**
- **"Arkone W"**
- **Aromatic hydrocarbons**
- **Arsenic salts**
- **Asphalt**
- **"Butyl E"**
- **Barium chloride**
- **Barium hydroxide**
- **Barium nitrate**
- **Barium salts**
- **Battery acid to 1.300 spg**
- **Beer**
- **Beer wort**
- **Best sugar liquors**
- **Benzaldehyde**
- **Benzene**
- **Benzensulphonic acid**
- **Benzoic acid**
- **Benzenophene**
- **Benzyol chloride**
- **Benzyol alcohol**
- **Bitumen**
- **Black sulphate liquor**
- **Blood**
- **Borax**
- **Boric acid**
- **Brake fluid**
- **Brighteners, electroplating**
- **Bromine**
- **Bromobenzene**
- **Butane**
- **"Butyl Dioxitol"**
- **Butyl acetate**
- **Butyl acetyl ricinoleate**
- **Butyl alcohol**
- **Butyraldehyde**
- **Butyric acid**
- **Calcium bisulphide**
- **Calcium chloride**
- **Calcium sulphide**
- **Calcium trifluoride**
- **Calcium hydroxide**
- **Calcium hypochlorite**
- **Calcium nitrate**
- **Calcium salts**
- **Caliche liquors**
- **Cane sugar liquors**
- **Carbitol**
- **Carbolic acid**
- **Carbon bisulphide**
- **Carbon dioxide**
- **Carbon disulphide**
- **Carbon tetrachloride**
- **Carbonic acid**
- **Castor oil**
- **Caustic soda up to 50%**
- **"Cellosolves"**
- **Chlorinated lime**
- **Chlorinated solvents**
- **Chlorine, dry**
- **Chlorine, wet**
- **Chloroacetic acid**
- **Chlorobenzene**
- **Chlorobromomethane**
- **Chloroform**
- **Chloronaphthalene**
- **Chlorosulphonic acid**
- **Chlorotoluene**
- **Chrome plating solutions**
- **Chromic acid**
- **Chromium salts**
- **Citric acid**
- **Coal tar naphtha**
- **Cod liver oil**
- **Coffee**
- **Copper salts**
- **Corn oil**
- **Cresote**
- **Cresote oil**
- **Cresols**
- **Cyclohexane**
- **Cyclohexanol**
- **Cymene**
- **Detergent solutions**
- **Dextrose**
- **Diacetone alcohol**
- **Diatomaceous slurry**
- **Dibenzyl ether**
- **"Dibuty Carbonite"**
- **Dibutyl phthalate**
- **Dichlorobenzene**
- **Dicyclohexylamine**
- **Diesel fuel**
- **Diethyl ether**
- **Diethylamine**
- **Diethylene glycol**
- **Disopropyl ether**
- **Disopropyl ketone**
- **Diisopropyl aniline**
- **Dimethyl formamide**
- **Dioctyl phthalate**
- **Dibutyl phthalate**
- **Dibutylcellosolve**
- **Dioxane**
- **Dioxane**
- **Diphenylene**
- **Diphenyl ether**
- **"Dowtherm" fluids**
- **Essential oils**
- **Essens**
- **Ethanamine**
- **Ethers**
- **Ethylenediamine**
- **Ethylenic chloride**
- **Ethylen glycol**
- **Ethylen oxide**
- **Ethylen trichloride**
- **Fatty acids**
- **Ferric chloride**
- **Ferric salts**
- **Ferric sulphate**
- **Ferrous chloride**
- **Ferrous salts**
- **Ferrous sulphate**
- **Fluoborates**
- **Fluoroboric acid**
- **Fluorobenzene**
- **Fluosilicic acid**
- **Formaldehyde**
- **Formamid**
- **Formic acid**
- **Fuel oils**
- **Fumaric acid**
- **Furan**
- **Furfural**
- **Gallic acid**
- **Gasoline**
- **Gelatin**
- **Glucose**
- **Glycerine**
- **Glycols**
- **Gold plating solution**
- **Green sulphate liquor**
- **Gum arabic**
- **Halowax oil**
- **Hexadecyl**
- **Hexamethane diamine**
- **Hexane**
- **Hexyl acetate**
- **Hydraulic oil**
- **Hydrazine**
- **Hydriotic acid**
- **Hydrobromic acid**
- **Hydrochloric acid, cold**
- **Hydrochloric acid, hot**
- **Hydrosylic acid**
- **Hydrofluoric acid, cold**
- **Hydrofluoric acid, hot**
- **Hydrofluosilicic acid**
- **Hydrogen gas**
- **Hydrogen peroxide**
- **Hydrogen sulphide, dry**
- **Hydrogen sulphide, wet**
- **Hydroquinone**
- **Hypochlorous acid**
- **Iodine**
Isobutyl alcohol
Isooctane
Isophorone
Isopropyl acetate
Isopropyl alcohol
Isopropyl chloride
Isopropyl nitrate
Kaolin
Kerosene
Ketones
Lactic acid, cold
Lactic acid, hot
Lard
Lauryl alcohol
Lead acetate
Lead nitrate
Linseed oil
Lithium grease
Lithium hydroxide 5%
Lubricating oils
Eye solution (KOH & NaOH)
Magnesol®
Magnesium ammonium sulphate
Magnesium chloride
Magnesium hydroxide
Magnesium nitrate
Magnesium oxide
Magnesium salts
Magnesium sulphate
Malic acid
Malcic anhydride
Manganese salts
Mascara
Mélamine
Mercuric chloride
Mercuric sulphate
Mercury
Mesityl oxide
Methane gas
Methyl alcohol (methanol)
Methyl bromide
Methyl chloride
Methyl chlorobromate
Methyl diphenylisocyanate
Methyl ethyl ketone
Methyl formate
Methyl isobutyl ketone
Methyl methacrylate
Methyl salicylate
Methylated spirits
Methylethel chloride
Milk
Mineral oils
Molasses
Monochlorobenzene
Mustard
Naphtha
Naphthalene
Natural gas
Nickel acetate
Nickel ammonium sulphate
Nickel chloride
Nickel salts
Nitric acid
Nitrosbenzene
Nitrosobenzene
Nitroethane
Nitroglucosides
Nitrogen oxides
Nitroparaffins
Nitrous acid
Oils, animal
Oils, lubricating
Oils, mineral
Oils, vegetable
Oleic acid
Oleum spirits
Oxalic acid
Oxaldehyde
Oxygen, cold
Ozone
Palmitic acid
Paraffin
"Parcalene"
Perchloric acid
Perchloroethylene
Petroleum
Petroleum white spirit
Phenol
Phenyl ethyl ether
Phenyl hydrazine
Phenylbenzene
Phorone
Phosphonate
Phosphoric acid
Phosphoric acid
Phthalic acid
Picric acid
Pine oil
Pineene
Piperidine
Polyethylene glycol
Potassium bicarbonate
Potassium chlorate
Potassium carbonate
Potassium chloride
Potassium cyanide
Potassium dichromate
Potassium hydroxide
Potassium iodide
Potassium nitrate
Potassium nitrite
Potassium permanganate
Potassium phosphate
Potassium salts
Producer gas
Propylene
Propionic acid
Propyl alcohol
"Pyrene Bonderite"
Pyridine
Pyrolligous acid
Pymrole
Rubber latex
Salicylic acid
Sea water
Sewage
"Shelfsol"
Silicon tetrachloride
Silicone oil
Silver nitrate
Silver carbonate
Silver chloride
Silver nitride
Silver oxide
Silver plating sols
Silver sulphate
Silver sulphide
Silver sulphite
Silver fulminate
Silver cyanide
Silver bromide
Silver nitrate
Silver nitrite
Silver perchlorate
Sodium hydroxide
Sodium borate
Sodium carbonate
Sodium chloride
Sodium cyanide
Sodium chloride
Sodium dichromate
Sodium hydroxy sulphite
Sodium hypochlorite
Sodium metaphosphate
Sodium nitrate
Sodium nitrite
Sodium perborate
Sodium pentoxide
Sodium perchlorate
Sodium polychloride
Sodium polyacetate
Sodium sulphate
Sodium sulphide
Sodium sulphite
Sodium thiosulphate
Soybean oil
Stannic chloride
Steam
Steam
Steam
Syrene
Sucrose solutions
Sulphur
Sulphur dioxide
Sulphur hexafluoride
Sulphur dioxide, dry
Sulphur dioxide, dry
Sulphur acid 10% cold
Sulphur acid 10% hot
Sulphur acid 10-75% cold
Sulphur acid 10-75% hot
Sulphur acid 75-95% cold
Sulphur acid 75-95% hot
Sulphurous acid
Tannic acid
Tanning extracts
Tar
Tartaric acid
Tertiary butyl catechol
Tertiary butyl mercaptan
Tetrachloroethane
Tetraethyl lead
Tetrahydrofuran
Tetralin
Thionyl chloride
Titanium dioxide
Tolucion
Toluene
diolcarboxylic acid
"Trisotan"
Triacetin
Triethylene glycol
Triethylethyl phosphate
Tritorylene
Trichloroethylene
Trichloroethane
Trichloroacetic acid
Triethylene glycol
Tricresyl phosphate
Trichloroethylene
Triacontane
Tritanolamine
Trinitrotoluene
Tung oil
Turpentine
Urea
Uric acid
Vegetable oils
Vinegar
Water, fresh
Water, sea
Water, steam
Whiskey
White spirit (petroleum)
Wine
Wood alcohol
Wort
Xylene
Xylool
Yeast
Zeolites
Zinc salts
Tubing Ordering Information

<table>
<thead>
<tr>
<th>Tube#</th>
<th>Tube bore</th>
<th>Bioprene</th>
<th>Marprene</th>
<th>Silicone Peroxide Cured</th>
<th>Silicone Platinum Cured</th>
<th>Neoprene</th>
<th>Butyl</th>
<th>Tygon</th>
<th>Fluorel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6mm (1/16") wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0.5mm</td>
<td>1/50"</td>
<td>903.0005.016</td>
<td>902.0005.016</td>
<td>910.0005.016</td>
<td>913.0005.016</td>
<td>920.0008.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.8mm</td>
<td>1/32"</td>
<td>903.0008.016</td>
<td>902.0008.016</td>
<td>910.0008.016</td>
<td>913.0008.016</td>
<td>920.0008.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>1.6mm</td>
<td>1/16"</td>
<td>903.0016.016</td>
<td>902.0016.016</td>
<td>910.0016.016</td>
<td>913.0016.016</td>
<td>920.0016.016</td>
<td>930.0016.016</td>
<td>950.0016.016</td>
</tr>
<tr>
<td>115</td>
<td>3.2mm</td>
<td>1/8"</td>
<td>903.0032.016</td>
<td>902.0032.016</td>
<td>910.0032.016</td>
<td>913.0032.016</td>
<td>920.0032.016</td>
<td>930.0032.016</td>
<td>950.0032.016</td>
</tr>
<tr>
<td>116</td>
<td>4.8mm</td>
<td>3/16"</td>
<td>903.0048.016</td>
<td>902.0048.016</td>
<td>910.0048.016</td>
<td>913.0048.016</td>
<td>920.0048.016</td>
<td>930.0048.016</td>
<td>950.0048.016</td>
</tr>
<tr>
<td>2.4mm (3/32") wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>1.6mm</td>
<td>1/16"</td>
<td>903.0016.024</td>
<td>902.0016.024</td>
<td>910.0016.024</td>
<td>913.0016.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>3.2mm</td>
<td>1/8"</td>
<td>903.0032.024</td>
<td>902.0032.024</td>
<td>910.0032.024</td>
<td>913.0032.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>4.8mm</td>
<td>3/16"</td>
<td>903.0048.024</td>
<td>902.0048.024</td>
<td>910.0048.024</td>
<td>913.0048.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>6.4mm</td>
<td>1/4"</td>
<td>903.0064.024</td>
<td>902.0064.024</td>
<td>910.0064.024</td>
<td>913.0064.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>8.0mm</td>
<td>5/16"</td>
<td>903.0080.024</td>
<td>902.0080.024</td>
<td>910.0080.024</td>
<td>913.0080.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2mm (1/8") wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>3.2mm</td>
<td>1/8"</td>
<td>903.0032.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>4.8mm</td>
<td>3/16"</td>
<td>903.0048.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>6.4mm</td>
<td>1/4"</td>
<td>903.0064.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>9.6mm</td>
<td>3/8"</td>
<td>903.0096.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>12.7mm</td>
<td>1/2"</td>
<td>903.0127.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>15.9mm</td>
<td>5/8"</td>
<td>903.0159.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0mm (5/32") wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>6.4mm</td>
<td>1/4"</td>
<td>903.0064.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>9.6mm</td>
<td>3/8"</td>
<td>903.0096.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>12.0mm</td>
<td>15/32"</td>
<td>903.0120.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>16.0mm</td>
<td>5/8"</td>
<td>903.0160.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8mm (3/16") wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>9.6mm</td>
<td>3/8"</td>
<td>903.0096.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>12.7mm</td>
<td>1/2"</td>
<td>903.0127.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>15.9mm</td>
<td>5/8"</td>
<td>903.0159.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>19.0mm</td>
<td>3/4"</td>
<td>903.0190.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>25.4mm</td>
<td>1"</td>
<td>903.0254.048</td>
<td>902.0254.048</td>
<td>901.0254.048</td>
<td>902.0254.048</td>
<td>903.0254.048</td>
<td>904.0254.048</td>
<td></td>
</tr>
</tbody>
</table>

Tube selection should initially be based on the chemical compatibility of the material. Watson-Marlow Bredel has samples available for use in an immersion test, which should be performed prior to making a tubing decision if chemical compatibility information is not available. Normally tubing is selected for the longest life, which will usually be Bioprene or Marprene. Tube selection is also governed by the type of pumphead utilized in the application.

- Tube bores from 0.5 to 8 mm with a wall thickness of 1.6 mm is acceptable for use with Watson-Marlow Bredel’s 300 Series and 501RL pumpheads. These sizes in the silicone material are also acceptable for the 102R pumphead up to 4.8 mm bore.
- Tube bores from 1.6 to 8 mm with a wall thickness of 2.4 mm can be utilized with Watson-Marlow Bredel’s 505L and 501RL2 pumpheads.
- Tube bores from 3.2 to 15.9 mm with a wall thickness of 3.2 mm can be utilized with Watson-Marlow Bredel’s 603R pumphead.
- Tube bores from 8 to 16 mm with a wall thickness of 4 mm can be utilized with Watson-Marlow Bredel’s 605L pumphead.
- Tube bores from 9.6 to 25.4 mm with a wall thickness of 4.8 mm can be utilized with Watson-Marlow Bredel’s 701R pumphead.
- The 25 mm bore Bioprene tubing is designed for use with the Watson-Marlow Bredel’s 825 Series pump assemblies.
- The 40 mm bore Bioprene tubing is designed for use with the Watson-Marlow Bredel’s 840 Series pump assemblies.